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Abstract

Background: Mapping protein primary sequences to their three dimensional folds referred to as the ‘second
genetic code’ remains an unsolved scientific problem. A crucial part of the problem concerns the geometrical
specificity in side chain association leading to densely packed protein cores, a hallmark of correctly folded native
structures. Thus, any model of packing within proteins should constitute an indispensable component of protein
folding and design.

Results: In this study an attempt has been made to find, characterize and classify recurring patterns in the packing
of side chain atoms within a protein which sustains its native fold. The interaction of side chain atoms within the
protein core has been represented as a contact network based on the surface complementarity and overlap
between associating side chain surfaces. Some network topologies definitely appear to be preferred and they have
been termed ‘packing motifs’, analogous to super secondary structures in proteins. Study of the distribution of
these motifs reveals the ubiquitous presence of typical smaller graphs, which appear to get linked or coalesce to
give larger graphs, reminiscent of the nucleation-condensation model in protein folding. One such frequently
occurring motif, also envisaged as the unit of clustering, the three residue clique was invariably found in regions of
dense packing. Finally, topological measures based on surface contact networks appeared to be effective in
discriminating sequences native to a specific fold amongst a set of decoys.

Conclusions: Out of innumerable topological possibilities, only a finite number of specific packing motifs are
actually realized in proteins. This small number of motifs could serve as a basis set in the construction of larger
networks. Of these, the triplet clique exhibits distinct preference both in terms of composition and geometry.

Background
Despite several decades of arduous effort, mapping of
protein primary sequences to their three dimensional
folds, referred to as the second genetic code, remains an
unsolved scientific problem. What appears to be lacking
is a comprehensive theory, integrating two factors which
definitely condition the isomorphism between sequence
and fold, namely (1) the pattern of hydrophobicities
embedded in the polypeptide chain [1] and (2) the pack-
ing of amino acid side chains to give densely packed [2]
protein interiors. Under the present circumstances, the
more tractable approach is the ‘inverse protein folding

problem’ [3,4], that is to identify protein primary
sequences [5] consistent with and supportive of a given
fold, an idea which has found considerable application
in the de novo design of targeted protein structures
[6-9]. Yet even here, it was realized earlier on, that in de
novo design, attainment of dense, well-packed protein
cores (a hallmark of native, correctly folded proteins)
was neither an automatic part of the design process nor
acquired simply by chance [10,11]. Most often, it was
observed (especially for longer sequences) that design
led to molten globules or complete unraveling of the
structure [12,13]. An instructive example was the
repeated failure to design parallel (a/b)8 - TIM barrel
[14,15], finally resolved successfully by Offredi et al.
[16], where a term optimizing for side chain packing
specificity was deliberately included in the
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computational process. In fact, one indicator for suc-
cessful computational design [17-20] is the attainment
of densely packed side chains in the interior of the tar-
geted protein, experimentally characterized by the
absence of ANS binding [16]. Thus, a comprehensive
theory with regard to the packing of side chain atoms
within proteins would not only provide insight into pro-
tein structures, facilitate their prediction [21] and would
also be a valuable aid in the design of novel proteins.
Traditionally, there have been two models of protein

packing: (1) the ‘jigsaw puzzle’ and (2) the ‘nuts and
bolts’ model which lie on the opposite ends of the spec-
trum. The jigsaw puzzle model attributed to Crick [22],
postulates the stereo specific interdigitation of amino
acid side chains giving rise to densely packed protein
interiors. On the other hand, the nuts and bolts model
[23] does not require the association of side chains with
specific geometry and asserts that the internal architec-
ture of proteins arises simply due to the high compac-
tion of side chain atoms within a constrained volume.
Lately, another model referred to as the ‘oil drop’ model
[24,25] has been proposed in order to capture the
dynamic fluctuations in protein cores. Possibly, all these
models concentrate exclusively on some special features
of interior packing. However, using a surface comple-
mentarity function a previous report from this labora-
tory [26] demonstrated that binary association between
two hydrophobic side chains (Leu-Leu, Leu-Phe etc),
with high surface fit and maximal overlap between their
corresponding residue surfaces, did exhibit specific
inter-residue geometry. It was thus clear that at least for
a subset of contacts (with high fit and overlap) predic-
tions of the jigsaw puzzle model were indeed valid.
One drawback from all such studies is that the inter-

residue interactions which sustain a native fold are more
accurately modeled as a network rather than a discrete
assortment of binary interacting pairs. Several attempts
have been made to view protein structures as contact
networks [27-35] wherein the amino acids have been
designated as nodes and their mutual non covalent
interactions as edges. The character of these networks
(in terms of degree distribution, clustering coefficients,
characteristic pathlength etc.) exhibit variability depend-
ing on the cutoffs used to define inter-atomic contact.
By and large, most protein contact networks preserve
‘small-world’ character (local cohesiveness, global reach)
[29,34,36-38] and display signatures of assortative mix-
ing (preferential attachment of new nodes to pre-exist-
ing high degree nodes) [34]. However, degree
distribution can be exponential, sigmoidal or dependent
on a single exponent - as a function of the criteria used
to define atomic interactions [32]. It has also been
noted that in certain aspects protein contact networks
differ significantly from other real world networks, for

example in the restricted number of edges a node can
have. Apart from providing insights into protein struc-
tures, these networks have been used to identify residues
implicated in folding nuclei [35] and transition states
[28], identifying functional residues involved in the
active site [30], hubs stabilizing the packing of secondary
structural elements [32], rationalization of the difference
in protein stabilities from thermophilic/mesophilic
organisms [32] and estimation of folding rates [27,31].
The utility of the network view of the protein structure
is thus fairly well established.
In this study, the distribution of such networks from a

database of protein structures has been analyzed in
order to identify specific topological patterns in side
chain association within protein cores. Such an analysis
led to the recognition that certain packing topologies
defined as packing motifs were found preferably in pro-
teins. A limited region of the topological space was
exhaustively mapped in terms of frequently occurring
packing motifs, combinations of which could lead to
networks of larger sizes. It was found that indeed larger
networks could be assembled out of a basis set of smal-
ler ones. One such frequently occurring motif namely
the three residue clique received special attention with
regard to its composition and geometry of associating
residues.
Central to pursuing the research objectives outlined

above was the extension of the jigsaw puzzle model into
protein contact networks. Thus protein contact net-
works have been defined primarily in terms of surfaces
rather than distance between point atoms (although
such networks have also been studied in parallel for the
sake of comparison). As mentioned previously, earlier
studies [26] had established quantitative measures (in
terms of surface complementarity and overlap) to iden-
tify those residue pairs whose interacting side chains
exhibit specific geometry. These measures have now
been used to define ‘surface contact networks’ based
only on those inter-residue interactions which severely
constrain geometry and thus could play a predominant
role in stabilizing a particular fold.

Results and Discussion
The primary objective of this study is to find, character-
ize and classify recurring patterns in the packing of side
chain atoms within a protein which sustains its native
fold. In this task we have deliberately chosen those con-
tacts which strongly and specifically condition the inter-
residue geometry of association. Since the majority of
atomic contacts inside a protein are contributed by side
chain atoms, it is natural to represent such interior
packing as a network, defined primarily in terms of con-
tact between their corresponding van der Waals surfaces
(ASCN). In addition, point atom contact networks
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(APCN) have also been studied simultaneously (albeit
with a fairly strong interaction cut off: 3.8 Å), by way of
comparison.
Contact between any two surfaces can be character-

ized in terms of overlap (Ov) that is the extent to which
two surfaces are conjoined and by their goodness-of-fit
or surface complementarity (Sm) (see Methods, section:
Surface Complementarity). In a previous work, it was
demonstrated that when surface association between
two amino acid side chains were greater than equal to
0.1 and 0.5 in Ov and Sm respectively (defined on a
Connolly surface), angular distributions specifying inter-
residue geometry exhibited significant deviations from a
random distribution [26]. For a corresponding van der
Waals surface, the values of Sm were found to be mar-
ginally lower for the same binary interactions. In con-
trast to point atoms, the definition of ‘contact’ (see
Methods, section: Surface Complementarity) between
two surfaces is not necessarily commutative (i.e. A con-
tact B does not imply B contact A). In networks based
on surface contact, nodes representing residues A and B
have been connected with an edge only when (1) the
contact between A and B is commutative and (2) their
reciprocal Sm and Ov both are greater than equal to 0.4
and 0.08 respectively. For strong association between
two residue surfaces their contact is expected to be
commutative, which also effectively simplifies the net-
work to an undirected graph. For both point atom and
surface contact networks, inter-atomic distance and sur-
face-overlap bear a strong positive linear correlation. Sm

on the other hand appears to be an additional feature
for the latter. Interestingly, the choice of 3.8 Å as the
interaction cut off for point atoms led to maximum
resemblance between the two categories of networks.
The first step was to study the distribution of net-

works in the protein database on the basis of size i.e.
the number of constituent nodes. Networks of smaller
size (3-10 nodes) dominated the distribution (Figure 1,
additional file 1: Figure S1) with a rapid decay in fre-
quency for larger networks (> 50 nodes). The distribu-
tions were however characterized by a long tail such
that networks with greater than 200 nodes were also
found, though with highly diminished frequency. The
distributions for both point-atom and surface contact
networks were very similar. The characteristic shape of
the distribution could be adequately described by a
power law (f (x) = k.x-n, where x is the network size),
though, surface contact networks did exhibit some
deviations in the range of graphs with 21 to 40 nodes
(in terms of higher observed frequencies than expected
from a power law). The exponent, n was found to be 2.2
and 2.1 for ASCN and APCN respectively. Relaxation of
the cutoffs on Sm and Ov did not appear to significantly
alter the basic character of the distribution apart from
decreasing the population for smaller networks thereby
extending the tail for larger ones. On the other hand
more stringent cut offs (Sm > = 0.5, Ov > = 0.1) led to
the disintegration of the larger graphs, consequently
increasing the frequency of small (3-10 nodes) and med-
ium (11-20) sized networks with a drastic curtailment in

Figure 1 Distribution of surface contact networks according to size. Frequency distribution of networks of different sizes (n) for ASCN
follows a power law decay (Corresponding histogram is displayed in the inset, the X axis being truncated at n = 50).
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the number of larger graphs (highest network size
obtained was 49 in comparison to 223 for Sm> = 0.4,
Ov > = 0.08) (Table 1). Thus, as has been previously
observed [32], there appears to be a very narrow margin
in terms of more stringent contact criteria which can
abruptly change the spread and extent of contact net-
works within proteins.
The same calculations repeated for polypeptide chains
distributed in bins with 75-150, 151-300, 301-500 resi-
dues gave similar curves, though for bins of larger chain
length, networks of larger size appeared, thereby extend-
ing the long tail of the distribution. As expected, fre-
quency distributions of polypeptide chains containing
networks of a particular size gave a similar decaying
trend with increasing network size; that is networks of
smaller size were found embedded in polypeptide chains
regardless of the chain length, whereas instances of lar-
ger graphs were progressively rare. These distributions
tend to indicate that (in the subset of contacts with spe-
cific inter-residue geometry of association) small (3-10
nodes) to medium (11-20 nodes) sized networks are
found universally in all protein structures, whereas

linkage and/or fusion of these smaller networks to form
larger ones is protein specific and is thus context depen-
dent. Very large networks (> 150 nodes) were found
only in 17 proteins (additional file 2: Table S1) almost
all of which had chain length exceeding 400 residues
with close packing between extended secondary struc-
tural elements (helices and sheets). Overall, most of the
very large networks were found in a|b proteins (addi-
tional file 3: Table S2).
In a protein contact network, there is an obvious

upper bound to the highest possible degree a node can
have (dependent on the contact criteria) due to the lim-
ited volume of the residues involved in packing. For the
present set of criteria, the highest degree of a node was
found to be restricted to 8 and 9 for ASCN and APCN
respectively.
From a graph theory perspective, local cohesiveness

(or clustering) of side chains should lead to dense pack-
ing within protein cores. To test this proposition, aver-
age unweighted (C) and weighted (Cw) clustering
coefficients were calculated for contact networks of all
sizes. Both these coefficients gave rise to almost identi-
cal measures. In parallel, a statistically significant num-
ber of random graphs (of corresponding sizes) were
generated (see Methods, section: Deviation from ran-
dom topology) for the direct calculation of their clus-
tering coefficients. In a log-log plot (Figure 2), average
clustering coefficients of the contact networks decayed
much less rapidly with increasing network size com-
pared to corresponding random graphs. Since, these
coefficients essentially determine the cliquishness of a
typical neighborhood [39] in terms of clustering of local
triplets [40], it follows that (closed) triplet cliques serve
as the units of (non-zero) clustering. In other words, a

Table 1 Frequency distribution of contact networks
according to size

Number of Networks

Network
Size

APCN ASCN

(0.0,
0.0)

(0.2,
0.05)

(0.3,
0.07)

(0.4,
0.08)

(0.5,
0.1)

3 1168 58 162 336 707 1995

4 614 51 99 165 349 1016

5 433 29 57 99 187 641

6 273 28 33 62 147 452

7 198 11 32 49 90 314

8 148 6 28 34 71 230

9 125 12 16 29 58 195

10 99 4 17 27 53 134

11-20 564 32 78 152 435 476

21-30 236 40 119 224 341 47

31-40 130 72 107 153 217 8

41-50 72 50 60 104 105 4

51-100 165 241 243 228 203 -

101-150 60 127 122 99 63 -

151-200 33 99 88 69 11 -

201-250 10 70 51 29 6 -

251-300 - 26 19 8 -

301-350 - 4 1 - -

Number of networks found in the database for different ranges of network
size (i.e., number of constituent nodes). Cutoffs in surface complementarity
(Sm) and overlap (Ov) respectively are given in bold within parentheses (for
ASCN). Results for the chosen set of cutoff values, used in the analysis (0.4,
0.08) are highlighted in bold.

Figure 2 Protein contact networks are locally cohesive .
Weighted average clustering coefficients (<Cw>) of contact
networks for ASCN (blue) with their corresponding values for
random networks (<Cr>: red) plotted against network size in a log-
log scale.
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graph of whatever size or connectivity will result in zero
clustering (C = Cw = 0) if there is no ‘closed triplet’
found embedded within it. It is to be noted that any
higher order clique could be considered as an associa-
tion of nested triplet cliques. Since, these results confirm
the probability of finding closed triplets to be much
higher in proteins than random graphs, 3-cliques as
‘clustering units’ have thus received detailed attention in
terms of geometry and composition, to be discussed in
later sections.

Packing Motif
One of the central concepts formulated in this study is
that of a ‘packing motif’. To start with, a packing motif
is defined as a graph with a limited number of nodes (3-
7), consisting of unique topological connections, which
can be found either in isolation or can appear as a com-
ponent or an induced subgraph, embedded within a lar-
ger graph. It follows that no two distinct motifs are
super-imposable onto each other. In other words two
motifs are identical (or topologically isomorphic) if there
exists a one-to-one correspondence between their vertex
sets which preserve adjacency [41]. The same motif can
be found in different proteins and since a node (in the
motif) does not conventionally represent any particular
amino acid, it could stand for different sets of residues
associated with diverse inter-residue geometries in the
actual three dimensional assemblies. Thus a packing
motif is a reduced representation of three dimensional
residue clusters, rather analogous to super-secondary
structural motifs where, for example, different combina-
tion of residues in unrelated proteins can fold into (say)
a helix-turn-helix.
In order to aid numerical manipulations, each motif

was uniquely represented by a linear array of numbers
(motif identifier) which can be regarded as a complete
set of invariants [41] between any two isomorphic
graphs. Initially each node of a given motif was assigned
a string of numbers (of length (d+1) where d is its
degree) starting with its own degree; followed by the
degrees of its direct neighbors sorted in descending
order. These numeric strings were collected as elements
of an array and further sorted in descending order.
Finally these sorted strings were concatenated, separated
by a delimiter (Figure 3). This identifier-string represen-
tation of each motif facilitated the computational detec-
tion, classification and clustering of motifs from the
protein database.
One of the primary objectives of this study is to (1)

identify recurrent motifs in smaller graphs and (2) to
ascertain whether larger graphs can be constituted by an
assembly of suitable motifs with appropriate topological
connections. Firstly, all contact networks observed in the
protein database were sorted according to their size (n).

For smaller graphs ranging from 3-7 nodes (or may be up
to 10), each set (with nodes n = 3, 4 ... etc) is expected to
populate a limited number of motifs (Table 2). Thus a
motif could essentially be viewed as a prototype, while
the actual networks observed in proteins as members
belonging to a specific type of motif. To estimate the
maximum number of possible motifs in networks of a
given size (n), a series of random graphs were generated,
conditioned by the fact that all nodes had to be con-
nected to at least one other node in the graph (see Meth-
ods, section: Algorithm to construct networks). In a
protein contact network, there is a definite upper bound
to the maximum number of edges a node can have.
Therefore the highest degree (for a given network size, n)
was determined from the set of actual protein contact
networks, and this number was used to constrain the
maximum attainable degree for the corresponding ran-
dom graphs. Good agreement between the actual number
of motifs observed in the database and the possible num-
ber of motifs from random graphs (with no cutoffs on

Figure 3 A novel numerical scheme to identify graphs with
unique topology. Graphs (packing motifs) along with a unique
number-string (motif identifier) displayed below each motif. Each
node is assigned a concatenated numeric where the first digit
stands for its own degree followed by degrees of its immediate
neighbor sorted in a descending order.
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the maximum attainable degree of a node) were found
for n = 3, 4 with rapidly increasing divergence for n ≥ 5
(additional file 4: Table S3). Most probably this was due
to systematic overestimation in the number of unique
random graphs. Thus for graphs with n ranging from 7
to 10, the number of possible motifs were recalculated by
varying the maximum allowable degree from 4 (for smal-
ler side chains) to the highest observed value in corre-
sponding protein contact networks, which happened to
be either 6 or 7 (for bulkier residues). However despite
lowering the cutoff on the permissible number of edges
for a node it appeared that for n ≥ 5 a diminishing num-
ber of possible motifs is actually being realized within
proteins (additional file 4: Table S3).
All networks were systematically searched for size of

the maximal clique (nc) (see Methods, section: Cliqu-
ishness) which interestingly was found to be no more
than 4 for embedded cliques (nc being 3 for a large
majority of cases) and not exceeding 3 for complete
graphs (or isolated cliques). In fact, the number of net-
works with a maximal clique of 3 and 4 nodes respec-
tively, were found to be 1548 and 77 in case of ASCN
(1662 and 146 in the same order: APCN). Since an n-cli-
que should exactly have (nC2 - n) diagonal edges, it fol-
lows that any possible closed-ring topology of n > 4 to be
found in the database can have at the most (nC2 - n -1)
diagonal edges. Thus the possible network architectures
spanning the space under study is expected to be
restricted to a few basic topologies namely linear chains,
closed triplets (with or without branching), closed quad-
ruplets (including embedded 4-cliques), higher order ring
closures (n > 4) with a restricted number of diagonal
edges and possibly a series of non-planar graphs.
For n = 3 there were trivially only two possible motifs

(1) the open linear chain (motif id: 211-12-12) and (2)
the isolated closed triplet clique (motif id: 222-222-222).

Both possibilities were found in protein contact net-
works, though with considerable difference in the num-
ber of their respective occurrences. The overwhelming
majority of these three-node graphs are found to be
open linear chains (660: ASCN; 1070: APCN) which
offer greater flexibility unlike isolated closed triplet cli-
ques (47: ASCN; 98: APCN) which can only occur, satis-
fying additional geometric constraints. It could also be
possible that triplet cliques once formed display an
inherent tendency to evolve into larger networks given
the fact that a significantly larger number of these cli-
ques were found to be embedded as induced subgraphs
in larger graphs (8876: ASCN; 9102: APCN) relative to
isolated instances. Out of a total of 719 polypeptide
chains in the database, embedded triplet cliques were
found at least once in 696, 689 for ASCN and APCN
respectively whereas for isolated instances the corre-
sponding numbers were 47 (ASCN) and 90 (APCN).
It is a relatively simple task (at least up to n = 5) to

enumerate the possible number of motifs and then find
their respective number of members (or the frequency
of their occurrence) in the protein database. It is how-
ever a more complex exercise to propose a sound classi-
fication scheme, which leads to the regular ordering of
actually observed motifs. To this end two additional
concepts were defined namely family and path. Two
motifs g(n) and g’(n+1) (with n and n+1 nodes respec-
tively) are related by a path if the motif g’(n+1) can be
formed from g(n) such that the node added to g(n) is
linked to only one pre-existing node by a single edge. In
other words the transformation g(n) ® g’(n+1) is a path
provided the newly added node has degree of one and
the degree of one and only one pre-existing node in g
(n) increases by one. Again, all motifs which can be
linked by successive paths: g(n) ® g’(n+1) ® g’’(n+2) ...
etc. fall within the same family. However, in case the
intermediate g’(n+1) was missing, g’’(n+2) was still
retained in the same family. Thus, essentially a path
leads to linear branching(s) about nodes belonging to a
basic core topology. It follows that a motif of larger size
(greater than 7 nodes) can either belong to an already
existing family provided it is appropriately linked by a
path or belong to an entirely new family (for example,
ring closures of n > 7) which was found to be remark-
ably less frequent.
For n = 4, there are six possible motifs, of which five

(with the sole exception of isolated quadruplet cliques
or complete graphs of 4 nodes) were found to have
members. Two motifs (221-221-12-12 and 3111-13-13-
13) found to have the highest number of members (205,
85: ASCN and 370, 117: APCN respectively) could be
related by a path to open linear chains (n = 3) or family:
f1 (Figure 4). A third motif (3221-232-232-13 with 52
members in ASCN and 99 in APCN) was included in

Table 2 Frequency distributions of small (3-10 nodes)
networks with their corresponding number of motifs

ASCN APCN

Network Size Networks Motifs Networks Motifs

3 707 2 1168 2

4 349 5 614 5

5 187 12 433 13

6 147 28 273 37

7 90 47 198 60

8 71 55 148 76

9 58 46 125 93

10 53 51 99 91

For a given network size, the number of networks observed in the database
and the corresponding number of unique motifs have been tabulated. For
example, 12 motifs were observed for 187 networks (ASCN) constituted of 5
nodes (3rd entry of the table).

Basu et al. BMC Bioinformatics 2011, 12:195
http://www.biomedcentral.com/1471-2105/12/195

Page 6 of 25



the family: f2, originating from closed triplet cliques
(Figure 5). The remaining two (222-222-222-222 and
3322-3322-233-233) motifs were closed four membered
rings (the latter having one diagonal edge) and were put
in distinct families (f3a, f3b) (additional file 5: Figure
S2). Thus up to n = 4, a total of 7 motifs with a total
number of 1056 (ASCN) and 1782 (APCN) members
were organized into 4 families (f1, f2, f3a, f3b), with the
overwhelming majority (1049: ASCN and 1754: APCN)
of members incorporated into families f1 and f2.
More or less the same trend was preserved for n = 5

where new motifs with significant number of members
were again placed in the families f1 and f2. Additional
motifs with marginal membership were included in f3a
and f3b, which were essentially branched four mem-
bered rings. Two more families (f4a and f4b) were

created at this point, the former (f4a) originating from
the closed pentagon (with no diagonals) whereas the lat-
ter (f4b) includes the pentagon with a single diagonal
edge (additional file 6: Figure S3). Other families at this
point include topologies demonstrated by two or more
closed triplets; fused along their edges (f5) (additional
file 7: Figure S4), connected at a node (f6a) or con-
nected by an edge (f6b) (additional file 8: Figure S5).
Once again, families other than f1 and f2 exhibited neg-
ligible memberships. Moving up levels n = 6, 7 led to
the inclusion of only five more families: (a) linkage of
two four membered rings through a node (f7: 1 member
each in ASCN and APCN) (additional file 8: Figure S5),
(b) embedded quadruplet cliques with additional linear
branching (f8a: 1 in ASCN and 4 in APCN) (c) non-pla-
ner graphs excluding quadruplet cliques (f8b: 1 in

Figure 4 Motifs belonging to family f1. Network diagrams of motifs up to size 7 (nodes) belonging to family f1. The family describes
topologies of minimally connected open linear chains. Motif identifier for each motif is displayed below the motif with the number of members
for ASCN and APCN respectively in parentheses separated by a front slash.
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ASCN and 3 in APCN) (additional file 9: Figure S6), (d)
closed six membered ring with or without diagonals
edges (f4c: 3 each in ASCN and APCN) (additional file
6: Figure S3) and (e) graphs where two non-adjacent
nodes are connected by more than two sequences of
successively connected nodes (f8c: 4 each in ASCN and
APCN) (additional file 9: Figure S6). The addition of
nodes from n = 5 to n = 6, 7 primarily led to the addi-
tion of motifs in the pre-existing families by, (1) increas-
ing the length and branching of the linear chain (f1), (2)
increased linear branching about the triplet cliques (f2),
(3) progressive branching and inclusion of diagonal
edges of the higher order closed rings (f3a, f3b, f4a, f4b,
f4c, f5).
At this stage it became obvious that the initial defini-

tions were leading to a proliferation of families with

almost negligible membership. Thus to reduce the num-
ber of such families some exceptions were made. For
families originating from five membered rings (f4a &
f4b), motifs with a closed triplet fused about any two
vertices of the pre-existing pentagon (3332-3322-3321-
233-232-232-13: f4a & 43322-3432-3432-243-242-232,
533221-3532-3532-253-252-232-15, 44322-44321-3442-
244-242-232-12: f4b) (additional file 6: Figure S3) were
included in the same respective families. Finally up to
n = 7, 94 (ASCN) and 117 (APCN) motifs with 1480
(ASCN) and 2686 (APCN) members respectively were
organized into 13 families.
The same procedure described above was performed

separately for polypeptide chains in each individual pro-
tein class (all a, all b, a|b, a+b), in order to investigate
any preference for specific motifs or families. By and

Figure 5 Motifs belonging to family f2. Network diagrams of motifs up to size 7 (nodes) belonging to family f2. The family describes
topologies of triplet cliques with or without linear branching. Motif identifier for each motif is displayed below the motif with the number of
members for ASCN and APCN respectively in parentheses separated by a front slash.
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large no outstanding preference was observed (after sui-
tably normalizing for the number of polypeptide chains
in each class) (see Methods, section: propensity),
though a somewhat reduced propensity was found for
family f2 (originating from closed triplet cliques) in the
case of all a proteins (0.67) with a relative increase in
propensity for a|b (1.20). The statistics was not robust
for most families barring f1 and f2 due to their extre-
mely low frequency of occurrence (additional file 10:
Table S4).
The trend regarding the distributions of motifs (with

preference for families f1 and f2) was not radically chan-
ged for different cutoffs on Sm and Ov, other than the
reduction of smaller (isolated) motifs on gradually relax-
ing the cutoffs. Notably, the population of f2 (family of
closed triplet cliques) was found to gradually approach
that of f1 (family of open linear chains) upon systematic
lowering of the cutoffs, allowing weaker links to close
the cluster. On the other hand, the application of more
stringent cutoffs (Sm > = 0.5, Ov > = 0.1) led to an
increase in the population of smaller motifs, predomi-
nantly in the f1 family. Most notable was the increase in
frequencies of motifs with 7 nodes (f1) probably due to
the exclusion of a few weaker links leading to ‘minimally
connected’ open linear chains (additional file 11: Table
S5).
Since from n = 5 to n = 6, 7 a diminishing number of

families (only 5) are added with negligible membership,
it is highly likely that larger networks (n > 10) will gen-
erate motifs either populating already existing families
or will be assembled by joining pre-existing motifs fol-
lowing a defined set of rules. Since the same trend of
preferential membership in the first two families were
followed in networks of size n = 8, 9, 10 (data not
shown) it was decided to begin the construction of
higher order graphs out of a motif basis set obtained
from networks of sizes up to n = 7, with the under-
standing that motifs of sizes greater than 7 nodes
(located in appropriate families) would also be utilized
depending on the context of a particular network. Var-
iants of a motif with branching(s) from nodes different
from those originally observed (especially for closed ring
topologies) though preserving core topology would also
be used in the resolution of larger graphs into sub-
graphs. For n = 10, the total number of motifs became
comparable to the number of networks or members
(Table 2). Thus, the resolution of larger graphs in terms
of the proposed basis set was attempted for n greater
than 10.
Generally, a graph can be resolved into either a degen-

erate subset of spanning subgraphs (derived by deleting
edges of a graph such that the number of nodes remains
conserved) and/or induced subgraphs (by deleting nodes
with their incident edges such that two nodes adjacent

in the subgraph must be adjacent in the original graph)
[41,42]. Thus, analogous to a spanning subset, deleting a
judiciously chosen set of specific edges of a graph
should produce independent unconnected components.
Since, in this study, such isolated components are trea-
ted as graphs (see Methods, section: Algorithm to
construct networks) it should be possible to resolve a
larger graph into a set of motifs (regarded as compo-
nents) or their variants from pre-existing families, by
deleting specific edges. Such edges, however, strictly
exclude those being involved in a closed ring (of any
size, n > = 3), so that the method does not trivially pro-
duce an arbitrary combination of motifs. On the other
hand, in an induced subgraph, there exists an identical
topological relation between any two corresponding
nodes to that of the original graph. This one-to-one
mapping serves as the basis for a computational search
for motifs embedded as induced subgraphs in a larger
graph. These two fundamental concepts of graph-analy-
sis were successfully implemented to test the hypothesis
whether the motif space is by and large adequate in
assembling larger graphs. Contact networks for n = 15
(38: ASCN; 47: APCN) were carefully examined using
Cytoscape [43] (additional file 12: Dataset S1) and it was
found that the majority of (24: ASCN; 28: APCN) net-
works could be resolved across one or more edges to
produce isolated components which were invariably
motifs belonging to pre-existing families (Figure 6).
Other networks could not be resolved into pre-existing
motifs by simply cutting across edges and in such
instances the majority of possible induced subgraphs
embedded in the graph were recognized as pre-existing
in the motif basis set (Figure 7). Cases were also found

Figure 6 A contact network resolved into components . A
contact network of size 15 (from 1OWL.pdb) resolved into isolated
components (separated by boxes) belonging to families f1, f2 and
f3b.
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where a larger graph was resolved into both components
and induced subgraphs (10: ASCN, 15: APCN) (Figure
8). It is to be noted that there can be more than one
sequence of steps to assemble a graph from degenerate
sets of subgraphs following either of these procedures.
As expected, for all cases, newly emerging motifs were
restricted only to ring closures of greater than 6 nodes.
Thus, predictably, for graphs with more than 15 nodes,
new motifs should mostly be closed ring topologies with
increasing number of nodes in the ring.
Possibly, introduction of cofactors and metals into pro-
teins could distort contact networks to give rise to novel
topological architectures. Preliminary analyses of net-
works associated with metal binding sites (on a reduced

database consisting of 63 polypeptide chains) exhibit
novel ‘highly connected’ motifs not found in ASCN/
APCN which show a greater tendency to form higher
order cliques (nc = 5, 6) provided the metal(s) is also
included in the contact network.

Triplet Clique
The classification of motifs into families reveals that the
overwhelming majority of contact networks found in
protein structures occur in the first two families (f1 +
f2) originating from core topologies of either open linear
chains or closed triplet cliques. Although the simple rule
governing the classification of motifs leads to about thir-
teen families in all, a significant proportion of these
families have such negligible membership that they can
be currently disregarded. To investigate whether the
most frequently occurring motifs exhibit any preference
in their constituent amino acid residues and whether
their side chains pack with specific geometry, closed tri-
plet clique (regarded as the ‘clustering unit’) was chosen
for further investigation. Analysis of the relative fre-
quencies of isolated and embedded triplet cliques
appeared to suggest that isolated cliques (or in other

Figure 7 A contact network resolved into induced subgraphs.
A contact network of size 15 (from 2HNF.pdb) resolved into
induced subgraphs (highlighted by different colors) belonging to
families f3a and f7.

Figure 8 A contact network resolved into induced subgraphs
and components. A contact network of size 15 (from 1MQV.pdb)
resolved into induced subgraphs (highlighted by different colors)
and components (separated by boxes) belonging to families f2, f4a
and f1 respectively.
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words, complete graphs of three nodes) have an inbuilt
tendency for further branching(s) about the three con-
stituent nodes resulting in their being embedded in lar-
ger graphs. Thus, to improve the statistics, both isolated
triplet cliques and those embedded as induced sub-
graphs in larger graphs were pooled together. Further,
since hydrophobic residues show greater propensity for
burial and inclusion into contact networks, only the sub-
space of triplet cliques composed exclusively of hydro-
phobic residues (Ala, Val, Leu, Ile, Phe, Tyr, Trp) were
considered. The resultant number of triplet cliques thus
reduced to 4874, 1545 out of a total of 8923, 9200 for
ASCN and APCN respectively. Interestingly, the number
of such cliques was found to be significantly higher for
ASCN relative to APCN, and since surface contact net-
works have been defined with a view to identify side
chain associations with specific inter-residue geometry,
results from ASCN alone are being discussed, which in
any case should give superior statistics.
For a combination of three residues packed in the

form of a closed triplet clique (Figure 9) three possibili-
ties can be expected: (i) C1: all the three constituent
residues are non-identical (e.g., Phe-Leu-Val) (ii) C2:
one residue unique, the other two being identical (e.g.,
Ala-Ala-Leu) and (iii) C3: all three residues identical
(Leu-Leu-Leu). Starting with the set of seven

hydrophobic residues (listed above) the total number of
possible combinations for each case are 35, 42 and 7
respectively. For assemblies of three identical residues
(C3), the highest frequencies were observed for Leu-
Leu-Leu (55.5%), followed by Ile-Ile-Ile (~19.2%) and an
almost equal proportion for Phe-Phe-Phe and Val-Val-
Val (both ~12%) (additional File 13: Table S6). A negli-
gible fraction of triplets was found to be composed
exclusively of Ala, Trp and Tyr. In all probability an
assembly of three leucines provides optimal conditions,
in terms of shape and size for cohesive packing. Ala and
Trp represent the opposite ends of the spectrum with
regard to volume and the association of tyrosines could
be disfavored due to the partial charge of its terminal
side chain oxygen (OH). A similar trend was observed
for triplet cliques with one unique and two identical
residues (C2). 40% of all triplets in this category were
composed of two leucines, with X-Ile-Ile, X-Phe-Phe
and X-Val-Val exhibiting frequencies 20.2%, 16.8% and
16.7% respectively. Predictably, X-Ala-Ala, X-Trp-Trp
and X-Tyr-Tyr were rarely found. For hydrophobic clus-
ters with three non-identical residues (C1), the most fre-
quent composition was that of Ile-Leu-Val (~15.4%). It
is notable that the most frequent triplet clique in this
category can also be considered to be an exception as
the overwhelming majority of triplets consist of at least
one aromatic residue (Trp, Tyr or Phe: 79.2%). Even
here, occurrence of only one aromatic in the triplet cli-
que appears to be preferred over two, whereas cliques
composed exclusively of aromatics seldom occur.
Thus, the data indicates that even though most of the

possible residue combinations are realized in local
closed triplets within proteins, there is a wide divergence
in their respective frequencies. Some residue combina-
tions definitely appear to be preferred over others.
Moreover, since only a subspace has been studied, the
compositional propensities appear to be fairly pro-
nounced, rather than outstanding. Without the use of
surfaces and careful classification of triplet cliques
(based on their compositions) these could well be over-
looked. The overall pattern in composition remained
fairly unmodified upon changing cutoffs in Sm and Ov.
Even then, the formation of well packed three residue
cliques in proteins appears to be constrained in terms of
the total volume occupied by the triplet and probably
their inter-residue geometry. In all probability, only
some residue combinations optimally satisfy these con-
straints. The question then is what are the geometrical
constraints imposed on these three-residue cliques?
Extending the methodology established by Thornton

and Singh [45] (to study inter-residue geometry between
two amino acids) an internal right-handed Cartesian
frame of reference was defined (Figure 10) for each of
the three residues constituting the triplet clique.

Figure 9 A three-residue clique, embedded in the protein
interior. An embedded triplet clique (from 3F67.pdb) constituted of
119-Phe (Olive), 142-Trp (Lime) and 143-Tyr (Yellow) displayed as
sticks in a background of broken stretches of the backbone being
displayed as cartoon (Cyan). The image was constructed using
PyMol [44].
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Connecting the origins of the three internal frames of
reference constructs a triangle, which can be considered
to be a reduced geometric representation of the assem-
bly. A global frame of reference was then defined on the
triangle plane (see Methods, section: Geometry of
three-node packing motifs), the global Z axis being the
normal to the plane and the origin being set at the cen-
troid of the triangle (Figure 11). However, there can
always be two degenerate directions of the normal (Z
axis). Therefore in order to secure uniformity among all
the reference frames the following conventions were
adopted:
1. For C1 (all three residues different), the three resi-

dues (R1, R2, R3) were first sorted on the basis of their
side chain volume R1 > R2 > R3. Let the vector directed
from the origin of R1 to R2 be v1 and that from R1 to
R3 be v2. Then the global Z axis was defined as v1 × v2
and the global X axis as the unit vector directed from
the global origin towards the origin of R1.
2. For a given composition in C2 (e.g., Leu-Phe-Phe)

one specific example was arbitrarily chosen whose

unique residue was designated R1 and R2, R3 were
assigned such that the identical procedure outlined
above (in 1) resulted in an acute angle being subtended
between the global Z and the internal Z of R1. All other
triangles with the same composition were superposed
onto this template. The calculations were repeated start-
ing from different templates to confirm that the results
were not artifacts of this geometrical procedure.
3. In case of C3 (e.g., Leu-Leu-Leu), a randomly cho-

sen triplet was arbitrarily assigned R1, R2, R3 and the
global frame was defined following procedure (1). All
other triangles of the same composition were super-
posed onto this template. To select for the best possible
superposition (additional file 14: Figure S7) in each case
6 combinatorial possibilities were checked. Similar to
C2, the calculation was repeated for different starting
templates.
For almost all the compositions the lengths of the tri-

angular edges and the internal angles were severely con-
strained, with standard deviations ranging from ~ 0.5 -
0.6 Å and ~ 5 - 10° in lengths and angles respectively.

Figure 10 Internal frames defined on individual residues. Internal (right handed) frames of reference for the amino acid residues defined on
the side chain atoms.
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In almost all the cases, the triangle approximates to
being equilateral with the average of all the three sides
lying between 5-6 Å and angles close to 60° (± 10°).
Inclusion of bulky residues in the triplet cliques (Tyr-
Phe-Leu), (Tyr-Phe-Ile) did not appear to significantly
alter the overall trends observed in these triangular
parameters. The longest average lengths were observed
for Ile-Leu-Leu (6.3 ± 0.6), Leu-Ile-Ile (6.4 ± 0.5), Ile-
Val-Val (6.3 ± 0.5) and Ile-Phe-Phe (6.3 ± 0.6) (Table 3).
Relative geometries of the three constituent residues

from the perspective of the abstract triangle defined
above were analyzed by means of two more angles,
namely tilt and swivel. Dot product of the global Z axis
defined on the triangle plane with Z axes (Z1, Z2, Z3) of
the internal frames of the three residues defines the tilt
angle (θt). It essentially describes the orientation of the
residue (principal) plane (see Methods, section: Geo-
metry of three-node packing motifs) with respect to
the triangle plane. As is well known, the angular distri-
bution of two randomly oriented vectors should fall of
as a function of sin θ’ dθ’/2 (where θ’ is the angle
between the two vectors) [45] and the deviation of an
actual observed distribution from one which is random
can be estimated by means of c2. Examination of c2 of
θt shows that for triplet cliques composed of at least
one aromatic, their corresponding tilt angles (θ1t) exhi-
bit significant deviation from randomness. Compositions
such as Phe-Leu-Leu (c2 (θ1t) = 72.1), Phe-Leu-Val
(60.0), Phe-Ile-Leu (48.5), Tyr-Leu-Leu (46.7), Tyr-Phe-
Leu (44.6), Tyr-Ile-Leu (39.0), Phe-Ile-Val (37.7), Tyr-
Leu-Val (35.5) etc (Table 4) indicates a preferred

orientation of the aromatic ring plane (residue: 1 in the
triplet) with respect to the global triangle plane. The
actual distribution of the angles (θt) shows the angular
bins 60-90°, 90-120° to be preferentially populated (with
respect to a random distribution) in contrast to ranges
0-30°, 150-180°, 30-60°, 120-150°, which exhibit a corre-
sponding depletion (Table 5). Thus, both the angular
distribution and visual inspection of the triplet cliques
indicate that for bulky aromatics, their normals (to the
residue plane) tend to be perpendicular to the global Z
axis, as if the side chain tend to enclose the volume
demarcated by the edges of the triangle, rather than
penetrating into its perimeter (Figure 9). The other resi-
dues (Ile, Leu, Val) however did not exhibit any consis-
tent specificity in their tilt.
In order to investigate the rotation of the residue

planes (XY plane of the residue-internal frames) about
an axis parallel to their own internal Z, the component
of the global Z axis of the triangle was projected onto
the respective planes and the orientation of this vector
(Zp) with respect to the internal X axis (defined as the
swivel angle �s ranging from 0-360°) was computed.
Since the angle �s is restricted to a plane, each quadrant
is expected to be equally populated for a random distri-
bution. c2 in �s did not appear to show any significant
preferences for any residue. Therefore, for a given tilt,
the residue plane can adopt multiple orientations about
an axis perpendicular to it.
In order to determine whether the formation of triplet

cliques was due to either long or short range contacts,
the position of residues along the polypeptide chain was
examined. The sequence separation of two residues
(involved in triplet clique formation) was termed local
when they were separated by less than (or equal to) 10
contiguous residues and non-local when greater than
10. Overall, out of a total of 26769 clique forming con-
tacts, 6585 were local and 20184 non-local. The same
calculations repeated for polypeptide chains distributed
in bins with 75-150, 151-300, 301-500 residues followed
the same trends. Thus, although the majority of contacts
were non-local, a non-negligible fraction (~ 25%) are
between residues closely located along the polypeptide
chain.
As has been mentioned previously (section: Packing

motifs), motifs from the f2 family were relatively
favored in a|b proteins and disfavored in the all a class.
The effect was accentuated for the set of all closed tri-
plet cliques (isolated and embedded) wherein the pro-
pensities for the classes were - all a (0.53), all b (0.88),
a|b (1.45) and a+b (0.87).
Calculations were also carried out to quantify local

packing densities (see Methods, section: Packing den-
sity) in and around triplet cliques and also in their
absence. Plots of packing density (f(x)) versus burial

Figure 11 Global frame of reference defined on the triangle,
based on a three residue clique. The triangle formed by joining
the origins of the three internal frames of references (X1, Y1, Z1; X2,
Y2, Z2; X3, Y3, Z3) defined on the residues, constituting the triplet
clique. The global frame of reference (Xtr, Ytr, Ztr) defined on the
triangle, is also displayed.
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ratio (x) (see Methods, section: Burial ratio) exhibited
an almost identical correlation for all the residue types
(Figure 12), decaying as a cubic polynomial (f (x) = a.x3

+ b.x2 + c.x + d), demonstrating loose packing with
higher exposure to the solvent. Networks were distribu-
ted into two major categories, those with triplet cliques
and those devoid of them. The former were further sub-
categorized into the set of clique-nodes alone and that
of the other non-clique members. It was evident from
the results that the clique-nodes are predominantly
completely buried (burial ratio < = 0.05) and thus on an
average, more tightly packed than the other non-clique
members whose average exposure to the solvent was
consistently found to be higher (Figure 13). These
regions of high local packing densities occur at or near
the cliques with gradual decrease at the periphery. On
the other hand, networks devoid of triplet cliques are on

an average less tightly packed as a consequence of
higher exposure to solvent.

Utility of surface contact networks in fold recognition - a
case study
Finally, an attempt was made to probe the efficacy of
surface contact networks in correctly identifying
sequences (situated amidst decoys) consistent with a
given fold. Cyclophilin-like fold (pdb code: 2HAQ) was
chosen as a test case and two decoy sets (a) random
sequences and (b) spliced sequences from other folds,
both of the same length as 2HAQ (166 residues) were
generated and threaded onto the 2HAQ backbone tem-
plate (see Methods, section: Decoy sets and thread-
ing). Each decoy set consisted of 250 sequences. In
addition to 2HAQ, two more sequences (native to the
given fold, from pdb files: 3BO7_B and 3KOP_F) having

Table 3 The triangle constructed from the associated residues in a triplet clique approximates to being equilateral

Composition Frequency <r12> <r13> <r23> < Ω1> < Ω2> < Ω3>

ILE LEU VAL 322 5.9 (0.7) 5.9 (0.7) 5.6 (0.5) 56.5 (7.5) 61.6 (9.2) 61.9 (8.6)

ILE LEU LEU 291 6.3 (0.6) 5.6 (0.6) 5.5 (0.6) 55.0 (7.9) 55.9 (5.9) 69.1 (7.1)

PHE ILE LEU 276 5.8 (0.8) 5.4 (0.6) 5.9 (0.6) 63.2 (9.5) 55.5 (9.3) 61.3 (10.9)

VAL LEU LEU 268 5.4 (0.5) 5.9 (0.4) 5.6 (0.6) 59.2(7.8) 65.2 (5.6) 55.5 (5.4)

PHE LEU VAL 246 5.5 (0.6) 5.3 (0.6) 5.6 (0.6) 61.6 (8.2) 57.7 (9.4) 60.7 (9.4)

PHE LEU LEU 237 5.1 (0.5) 5.8 (0.5) 5.6 (0.5) 62.1 (8.4) 65.7 (7.6) 52.1 (5.7)

LEU LEU LEU 202 5.2 (0.5) 6.1 (0.3) 5.7 (0.4) 59.5 (4.2) 67.8 (4.9) 52.6 (4.7)

LEU ILE ILE 187 6.4 (0.5) 5.7 (0.6) 6.3 (0.8) 63.4 (11.7) 52.8 (7.0) 63.8 (7.6)

LEU PHE PHE 162 5.1 (0.5) 5.8 (0.5) 5.5 (0.5) 60.7 (9.3) 66.1 (7.0) 53.3 (5.9)

TYR ILE LEU 151 5.7 (0.8) 5.3 (0.6) 6.0 (0.6) 65.5 (8.8) 53.9 (9.5) 60.5 (11.1)

PHE ILE VAL 150 5.7 (0.7) 5.4 (0.7) 5.9 (0.7) 64.9 (10.6) 55.6 (10.7) 59.5 (10.3)

VAL ILE ILE 134 5.5 (0.6) 6.3 (0.6) 6.2 (0.8) 63.1 (11.1) 64.9 (7.5) 52.0 (7.2)

LEU VAL VAL 128 5.9 (0.4) 5.3 (0.5) 5.7 (0.5) 61.1 (8.0) 54.8 (4.7) 64.1 (6.1)

ILE VAL VAL 119 6.3 (0.5) 5.5 (0.6) 5.7 (0.5) 57.8 (8.1) 54.4 (6.4) 67.8 (5.9)

TYR PHE LEU 117 5.5 (0.6) 5.4 (0.6) 5.4 (0.5) 59.6 (9.0) 59.6 (10.1) 60.7 (9.5)

ILE PHE PHE 105 6.3 (0.6) 5.5 (0.7) 5.5 (0.6) 54.6 (8.5) 54.9 (7.3) 70.5 (7.2)

TYR LEU LEU 104 4.9 (0.4) 5.9 (0.5) 5.5 (0.6) 60.9 (8.5) 67.9 (7.1) 51.2 (6.3)

TYR LEU VAL 98 5.4 (0.6) 5.4 (0.7) 5.5 (0.4) 60.7 (7.6) 59.4 (10.1) 59.9 (10.4)

PHE ILE ILE 94 5.5 (0.6) 6.3 (0.7) 6.4 (0.9) 66.0 (11.3) 63.1 (8.5) 50.8 (6.7)

PHE VAL VAL 88 4.9 (0.6) 5.8 (0.5) 5.7 (0.5) 63.5 (10.0) 65.7 (7.7) 50.8 (6.8)

TYR PHE ILE 85 5.6 (0.5) 5.7 (0.9) 5.8 (0.8) 61.8 (12.1) 59.9 (13.3) 58.2 (9.9)

TYR PHE VAL 77 5.5 (0.6) 5.5 (0.6) 5.5 (0.7) 59.9 (10.7) 59.3 (10.0) 60.7 (9.9)

ILE ILE ILE 70 5.5 (0.6) 6.4 (0.5) 7.0 (0.6) 72.1 (6.2) 59.9 (4.5) 48.0 (5.8)

TYR ILE VAL 69 5.8 (0.9) 5.4 (0.6) 5.9 (0.7) 63.4 (10.6) 55.0 (10.3) 61.5 (11.7)

VAL PHE PHE 67 5.8 (0.5) 5.0 (0.5) 5.4 (0.5) 59.8 (9.0) 52.3 (6.9) 67.8 (8.0)

TRP PHE LEU 56 5.5 (0.6) 5.6 (0.6) 5.4 (0.6) 58.7 (8.5) 61.6 (10.3) 59.7 (9.3)

TYR PHE PHE 53 5.9 (0.5) 5.1 (0.4) 5.5 (0.5) 59.8 (9.2) 52.6 (5.7) 67.5 (8.1)

LEU VAL ALA 50 5.7 (0.5) 4.7 (0.4) 4.7 (0.4) 53.4 (5.3) 53.1 (6.8) 73.5 (7.7)

Average lengths of sides (Å) and internal angles (°) (along with their standard deviations in parentheses) of the triangle formed by joining the origins of the
three internal frames corresponding to the constituent residues (in a triplet clique) are tabulated. Only those compositions have been given whose frequencies
are greater than equal to 50.
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sequence identities of 37% and 11% (with 2HAQ)
respectively were also included, the latter to ascertain
whether the method worked for sequences with low
identities, yet mapping to the same fold. Surface contact
networks of 2HAQ and 17 other close homologues
(sequence identities upon structural alignment with
2HAQ > = 40%, rmsd < 1.5 Å) were rigorously analyzed
(see Methods, section: Topological fold detection
measures) to identify a subset of links in 2HAQ where
each link was conserved in (at least 80% of) the homolo-
gues and thus could be regarded as a characteristic sig-
nature, representative of the fold. This fold specific
subgraph, {Lcyp} consisting of 31 links between 36
nodes (mostly buried, hydrophobic residues) spans the
three dimensional structure of the entire protein in
terms of spatially connecting almost all the secondary
structural elements (additional file 15: Table S7). They
were also found to have appreciably high surface com-
plementarity (average Sm: 0.608 (0.07), min: 0.48, max:
0.71) and overlap (average Ov: 0.15 (0.03), min: 0.1,
max: 0.21). In order to characterize the corresponding
subgraph of {Lcyp} in a threaded structure, all nodes in
{Lcyp} were mapped in that structure (see Methods:
Topological fold detection measures) and the corre-
sponding nodes extracted along with all their inter-con-
necting links. This (induced) subgraph (in the threaded
structure) was then compared with {Lcyp} (serving as a
template) by means of two complementary topological
measures (snet, dnet) defined (see Methods, section:
Topological fold detection measures) to quantify the
compatibility of a sequence to a given fold. snet essen-
tially evaluates the fraction of links in {Lcyp} that are

Table 4 c2 for angular variables for triplet clique
compositions exhibiting specific geometry

Composition Frequency c2
(θ1t)

c2
(θ2t)

Χ2

(θ3t)
c2

(�1s)
c2

(�2s)
c2

(�3s)

PHE ILE LEU 276 48.5 11.2 35.8 15.3 14.5 5.8

PHE LEU VAL 246 60.0 20.6 5.2 14.0 8.5 6.8

PHE LEU LEU 237 72.1 25.5 13.5 13.9 20.8 3.8

TYR ILE LEU 151 39.0 2.9 7.3 20.5 16.0 10.0

PHE ILE VAL 150 37.7 9.3 16.7 19.4 4.9 19.5

TYR PHE LEU 117 44.6 6.2 2.8 18.5 5.7 10.6

TYR LEU LEU 104 46.7 15.2 8.6 6.4 5.3 16.4

TYR LEU VAL 98 35.5 8.7 9.5 7.4 3.1 6.6

PHE VAL VAL 88 21.6 24.9 5.1 14.1 4.2 4.5

TYR PHE VAL 77 20.3 3.0 4.0 9.0 10.2 2.0

TYR ILE VAL 69 23.4 2.5 3.8 4.5 2.0 4.7

TRP LEU LEU 47 29.5* 4.0* 5.1* 3.9 17.7 2.9

TRP LEU VAL 41 23.9* 5.3* 3.0* 6.3 6.3 3.9

c2 of tilt angles (θ1t, θ2t, θ3t) and swivel angles (�1s, �2s, �3s) of residues
constituting the clique (where 1, 2, 3 corresponds to the same sequence of
residues given in the table e.g., PHE ® 1, ILE ® 2, LEU ® 3 for the first entry)
for compositions showing significant deviation in θ1t from a random
distribution. c20.05 for three-bin and six-bin models are 5.991 and 11.071,
respectively. Compositions which have a predicted frequency of less than 5
for any particular angular bin, assuming a random distribution are marked
with an asterisk (*). This minimal number (of data points) is 37 for a 3-bin and
74 for a 6-bin model for tilt (θt) angles and 30 for a 6-bin model for swivel
(�s) angles.

Table 5 Distribution in θ1t for triplet clique compositions
exhibiting high c2

% Occupancy in bins with θ (deg.) range

Composition c2
(θ1t)

0-
30

30-
60

60-
90

90-
120

120-
150

150-
180

Random
(6bin):

6.7 18.3 25.0 25.0 18.3 6.7

Random
(3bin):

13.4 36.6 50.0 - - -

PHE ILE LEU 48.5 4.0 26.1 69.9 - - -

PHE LEU VAL 60.0 4.5 21.1 74.4 - - -

PHE LEU LEU 72.1 2.1 21.1 76.8 - - -

TYR ILE LEU 39.0 2.0 23.8 74.2 - - -

PHE ILE VAL 37.7 4.0 21.3 74.7 - - -

TYR PHE LEU 44.6 1.7 17.9 80.4 - - -

TYR LEU LEU 46.7 0.0 17.3 82.7 - - -

TYR LEU VAL 35.5 2.0 18.3 79.7 - - -

PHE VAL VAL 21.6 0.0 28.4 71.6 - - -

TYR PHE VAL 20.3 3.9 20.8 75.3 - - -

TYR ILE VAL 23.4 1.4 20.3 78.3 - - -

TRP LEU LEU 29.5 0.0 2.1 44.7 44.7 6.4 2.1

TRP LEU VAL 23.9 2.4 7.4 43.9 43.9 2.4 0.0

Angular distribution of θ1t in different angular bins (3-bin models for Phe and
Tyr and 6-bin model for Trp: 30° bins) for compositions that have shown
significant deviations from a random distribution:

Figure 12 Packing density as a function of burial ratio. Packing
density decays with increasing burial ratio (which is an index of the
exposure to the solvent) following a cubic polynomial (plotted for
tyrosine).
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conserved in the corresponding subgraph, whereas dnet
estimates the dissimilarity in the topological pattern
between {Lcyp} and the corresponding subgraph in
terms of an abstract distance measure. Thus, for the
corresponding subgraph extracted from the 2HAQ
native structure, snet will attain its highest possible
value of 1.00 and dnet will be very close to its lowest
possible value of 0.00.
Statistical analysis involved computing snet, dnet and

estimating their mean (μ) and standard deviation (s) for
the 250 decoys of each set. For the sequences 2HAQ,
3BO7_B and 3KOP_F, the same sequence was threaded
250 times (onto the backbone template of 2HAQ), each
time with a randomly selected set of side chain

conformers (see Methods, section: Decoy sets and
threading).
The statistical parameters (μ, s) for both the decoy

sets were in very good agreement. Average values of
snet were found to be fairly low for both the decoy sets
(Table 6) compared to the native sequences 2HAQ,
3BO7_B and 3KOP_F, the difference in their means
being about 2 - 3 times the value of sdecoy. Again the
highest average snet was obtained for 2HAQ followed
by 3BO7_B and 3KOP_F. The fact that 3KOP_F was
effectively discriminated from the decoys demonstrated
the possible utility of the method in identifying such
cases (without actually solving for the optimal side
chain packing arrangement). dnet was also able to

Figure 13 Nodes of a clique exhibit greater propensity to get completely buried. Percentage fraction of individual residues categorized
into clique-nodes (dark gray), non-clique nodes of clique containing networks (gray) and nodes of networks devoid of cliques (light gray) sorted
according to their exposure to solvent in terms of burial ratio: (A). for burial ratio < = 0.05 (completely buried), (B). for 0.05 < burial ratio < =
0.15 (partially buried with lower exposure to the solvent), (C). for 0.15 < burial ratio < = 0.3 (partially buried with higher exposure to the solvent).
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differentiate between decoys and sequences native to the
fold even though with marginally lower significance (~
1.5 - 2.5 times sdecoy). Thus, even this limited calcula-
tion appeared to indicate the ability of surface contact
networks to correctly identify native sequences from
decoys. All statistical parameters were found to be by
and large stable over 100, 150, 200 and 250 files.
Apart from fold detection, these measures can also be

used to study networks in general by actually quantify-
ing their resemblance and/or dissimilarity. In other
words, both snet and dnet should precisely reflect and
sort networks according to varying degrees of likeness
compared to a template. In order to benchmark these
functions, {Lcyp} was compared with corresponding sub-
graphs from seven other homologous structures from
the cyclophilin-like fold (independent of the 17 which
were use to construct {Lcyp}), with gradually decreasing
sequence identities ranging from 39% to 10% upon
structural alignment with 2HAQ. Prior to computing
the topological measures, each structure was aligned to
2HAQ to generate a one-to-one mapping of their resi-
dues. These maps were utilized to extract the corre-
sponding subgraphs of {Lcyp} from the homologous
structures. In case of insertions-deletions or non-align-
ment, the rows and columns corresponding to the miss-
ing node(s) (in the related adjacency matrix of the
homologue) were zero-padded. Both the measures snet
and dnet exhibited excellent correlations with respect to
sequence identity and root mean square deviation
(between CA atoms) of the homologues upon structural
alignment to 2HAQ (Table 7). These results appeared to
validate the ability of these topological measures to cor-
rectly assess the resemblance of fold specific subgraphs.

Conclusions
The work presented here is based on the confluence of
two related though distinct ideas, (1) some network
topologies are preferred within protein interiors, leading
to the concept of packing motifs and (2) the ‘jigsaw puz-
zle’ model can be successfully extended into the domain
of protein contact networks
The implementation of both these ideas depends partly

on representing the internal architecture of proteins in
terms of surfaces rather than point atoms. It has been
noted previously that use of surfaces improved the per-
formance of a side chain (torsion) prediction test [46,47]
and provided simple well defined criteria to identify
those contacts which definitely constrain inter-residue
geometry of the associating amino acid side chains [26].
Presumably these set of interactions could be playing a
more critical role in sustaining the native fold. Networks
based on surface contacts (with appropriate cut offs on
Sm and Ov) is in effect a straightforward extension of the
jigsaw puzzle model. In the search for compositional or
geometrical bias, surface contact networks appear to be
indispensable. In particular, triplet cliques composed
exclusively of hydrophobic residues had a frequency 3
fold higher in ASCN than APCN starting from a compar-
able (total) number of triplet cliques. Further more, com-
positional preferences along with strong geometrical
constraints were far better explored by surfaces than
point atoms (additional file 16: Table S8).
One feature which appears to be more or less con-

served in surface contact networks (irrespective of the
cutoff criteria in surface complementarity and overlap)
is the almost ubiquitous presence of smaller networks
(3-10 nodes) in all proteins which probably coalesce to
produce larger networks specific to the particular fold.
Thus, the distribution in network sizes and topologies

Table 6 Topological measures to discriminate between
native and decoy sets - a case study on the cyclophilin-
like fold

Category Similarity (snet) Distance (dnet)

Mean Min Max Mean Min Max

Random
Sequences

0.156
(0.093)

0.032 0.452 0.880
(0.081)

0.650 1.000

Sequences from
other folds

0.143
(0.097)

0.000 0.387 0.880
(0.079)

0.676 1.000

2HAQ 0.405
(0.089)

0.129 0.677 0.688
(0.069)

0.486 0.909

3BO7_B 0.390
(0.081)

0.194 0.613 0.734
(0.060)

0.558 0.880

3KOP_F 0.307
(0.063)

0.032 0.484 0.766
(0.049)

0.639 0.969

250 files from each category, two decoy sets and three sequences native to
the cyclophilin-like fold were used in the calculations. For all sequences, side
chain conformers were assigned randomly. 3BO7_B and 3KOP_F has 37% and
11% sequence identity to 2HAQ. Standard deviation for each measure is given
in parenthesis.

Table 7 Validation of the topological measures (snet,
dnet) used to compare fold specific subgraphs

PDB ID Sequence
identity
(%)

Number of
residues
aligned

Rmsd
(Å)

Similarity
(snet)

Distance
(dnet)

2POE_A 39 152 1.2 0.806 0.390

3BO7_B 37 152 1.5 0.742 0.489

2NUL_A 37 147 1.8 0.774 0.385

2OSE_A 30 153 2.1 0.548 0.614

1ZX8_A 15 108 2.5 0.516 0.679

3KOP_F 11 126 2.8 0.484 0.712

2P0O_A 10 96 2.9 0.452 0.725

7 crystal structures (from the cyclophilin-like fold) with varying sequence
identities (less than 40% w.r.t. 2HAQ) were superposed onto 2HAQ and the
corresponding subgraphs of {Lcyp} constructed, prior to the estimation of
snet, dnet. Both the topological measures show very high correlations with
sequence identities as well as root mean square deviation upon structural
alignment with 2HAQ.
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appear to favor a nucleation-condensation phenomenon
[48,49] in protein packing wherein open linear chains,
closed triplet cliques and other closed ring topologies
could serve as basic packing units which could either
get linked or recruit neighboring residues to grow into
networks of larger size. This notion of packing units led
to the definition of ‘packing motifs’, which could serve
as a ‘basis set’ in the assembly of extended graphs.
Since graphs ranging from 3 to more than 200 nodes

have been detected in proteins, the concept of a ‘basis
set of motifs’ should represent sets of similar topologies
(along with their variations in terms of linear branching)
rather than a rigid set of isolated unique graphs. This
was the rationale behind the organization of motifs into
families (or set of similar graphs with gradual addition
of nodes following a path such that the core topology
remains unaltered) and it soon became clear that some
families were overwhelmingly preferred in protein topo-
logical space. These families emanated from the ‘mini-
mally connected’ open linear chains and three residue
cliques (regarded as clustering units) and cast their
dominant influence in frequency distribution of motifs.
Other families occurred with such abysmally low fre-
quencies that they could be considered oddities rather
than the rule. Thus, in accord with the inductive
approach of the current work, it was felt that larger
graphs (n > 10) would either fall into pre-existing
families or could be assembled by known motifs or their
variants. This possibility was explored for networks of
15 nodes and the observations tended to support the
hypothesis.
One major drawback of the present study is the lack

of a computational method to analyze larger graphs.
Although, starting from the novel numerical scheme
(Figure 3) a suitable algorithm was able to identify all
possible induced subgraphs of a given larger graph, yet
manual intervention was indispensable to resolve the
larger graph into an optimal set of constituent motifs.
Despite its rigor the tedious visual method restricted the
analysis to a small fraction of the network space. How-
ever, even with this handicap, the general trend appears
to be unmistakable. It thus appears that the topological
space available to protein contact networks is severely
constrained with clearly defined preferences. A unique
constraint is the definite upper bound found in the size
of the maximal clique (nc < = 4) - a property rarely
observed in real world networks [50]. Obviously, this is
due to the atomic environment in protein interiors that
restricts the permissible number of edges a node can
have. Thus, although only a limited portion of the topo-
logical space has been actively explored, the conclusions
are expected to be significantly in the right direction.
The next step was to enquire whether packing motifs

exhibited any preferences in terms of their constituent

residues and geometry. For this, triplet cliques were
selected due to their ubiquitous presence primarily as
induced subgraphs embedded in larger graphs. It soon
became evident that in the sub-space of hydrophobic
residues, regular trends of propensities favoring specific
residues or their combination do indeed exist and cer-
tain geometrical features exhibit very strong constraints
(especially the approximately equilateral triangle con-
necting the three residue-origins and the tilt angles of
aromatic residues). What is perhaps notable is that
these compositional and geometric preferences stand a
possibility of detection only when statistical analysis is
performed subsequent to the precise classification of
motifs and the appropriate partitioning of the topologi-
cal space. In other words, looking for preferences in
case of a pooled set of three residue graphs or sub-
graphs without adequate classification/characterization
is most likely to end in failure.
The most direct application of this study should be in

the area of protein fold recognition which is to select a
polypeptide chain belonging to a particular fold
[21,51-53] from a set of decoys. The most challenging
aspect of this problem is to identify those chains consis-
tent with a fold (represented by a set of main chain
coordinates), even though identity upon alignment with
the sequence (native to the three dimensional structure)
is significantly low (< 20%). Preliminary calculations
show that topological measures (snet and dnet) defined
on surface contact networks are indeed able to discrimi-
nate sequences native to a particular fold (cyclophilin-
like) from decoy sets. Although the threading procedure
was fairly straightforward and the decoy sets rather lim-
ited, yet all indications appeared to suggest the robust-
ness of the fold prediction method. Most probably the
scores could be improved by the adoption of more
sophisticated threading procedures which actually solves
for the most optimal side chain packing arrangement,
rather than averaging over a large number of random
side chain conformers. However, the interesting fact is
that the native sequences specific to a particular fold
could be distinguished from the decoy sets, based on
the statistics of the topological measures alone, despite
having randomized side chain conformers. The utility of
these functions to sort networks based on topological
resemblance (with respect to a template) is also notable.
Large scale improvement and application of these meth-
ods are currently being investigated.
Another fruitful area of research could be to explore

the possibility of introducing triplet cliques into
designed proteins to stabilize their packing analogous to
the engineering of disulfide bridges, in order to improve
thermal stability. A library of triplets exhaustively docu-
menting their conformational, geometrical and topologi-
cal features might be useful in this regard.
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Thus in conclusion, it appears that out of innumerable
topological possibilities, only a finite number are actually
realized in protein contact networks which either are
themselves or could be assembled from a limited set of
preferred motifs. One such recurrent motif, the triplet
clique, exhibits clear preferences in its constituent resi-
dues and very strong constraints with regard to certain
geometrical features.

Methods
The Database
Initially, 918 unique protein crystal structures were
selected from the protein data bank (RCSB-PDB) [54]
with a maximum R factor of 20% and a resolution cutoff
of 2.0 Å. Upon sequence alignment of any two proteins
from the database, in no case was their sequence iden-
tity greater than 30%. For oligomeric proteins the largest
polypeptide chain was retained and for atoms with mul-
tiple occupancies, those with the highest occupancy
were used in the calculations. In case of equal occu-
pancy the first conformer was selected. Proteins with
incomplete side chain atoms and those with missing
stretches of amino acid residues were individually sur-
veyed in RasMol [55]. If the missing stretch(s) or resi-
due(s) involving incomplete side chain atoms was found
to be either in the extremities (N/C terminal) of the
chain or on completely exposed loop regions with no
participation in interior packing, the protein was
included in the database, otherwise rejected. The length
of the chains ranged from 75 to 500 amino acid resi-
dues. The final database consisted of 719 polypeptide
chains of which 18.5% was all a, 19.9% - all b, 32.5% -
a|b and 29.1% - a+b (additional File 17: Table S9). The
protein class for each chain was decided by visual exam-
ination in Rasmol and a search in the SCOP database
[56]. 53 multidomain proteins were appropriately trun-
cated and their domains allotted to the relevant class.
The program Reduce [57,58] was used to geometrically
fix hydrogen atoms on the proteins prior to the
calculations.

Burial ratio
The exposure of residues to solvent (probe radius 1.4 Å)
was estimated by the ratio (burial) of solvent accessible
areas (SAA) of the amino acid, X in the polypeptide
chain to that of an identical residue located in a Gly-X-
Gly peptide fragment with a fully extended conforma-
tion. Residues that were completely (0.00 < = burial
ratio < = 0.05) or partially buried (0.05 < burial ratio <
= 0.3)) were only considered in the analysis.

Algorithm to construct networks
As is well known every network can be represented as a
graph, G = (V, E) which formally consists of a set of

vertices (or nodes) V and a set of edges (or links) E
between them. Trivially a graph can contain one or more
standalone nodes (a node which is not connected to any
other node in the graph) and a subgraph is called a com-
ponent [41] of the graph provided each node is con-
nected at least to one other node of the graph. In protein
contact networks to be defined, no standalone node was
considered. Thus, in this context, ‘graph’ and ‘compo-
nent’ were treated synonymously. In the present study, a
nodal point stands for the side chain of a particular resi-
due, and two types of networks were defined based on
surfaces and point atoms. For the case of point atoms, if
any two atoms located on two different side chains were
within 3.8 Å of each other, the two representative nodes
were connected by a link. The number of atomic contacts
between two side chains was considered to be the weight
of the connecting edge. The network spanning the entire
protein was constructed by exhaustively searching for
contacts in the neighborhood of buried residues until no
more nodes could be included in the network. Thus a
protein could have more than one contact network
embedded within it with no common nodes between
them. The smallest networks considered had three nodes.
With the exception of glycine any residue could be repre-
sented by a node.

Van der Waals surface generation
The van der Waals surfaces for the proteins (including
all hydrogen atoms) were sampled at 10 dots/Å2, the
atomic radii being assigned from the all atom molecular
mechanics force field [59]. The details of the surface
generation have been discussed elsewhere [26]. In case
of disulphide bridges care was taken to remove the extra
points due to the interpenetration of the van der Waals
spheres of the covalently linked sulphur atoms. Thus,
the entire surface of the polypeptide chain was sampled
as an array of discrete area elements defined by their
location (x,y,z) and the direction cosines (dl,dm,dn) of
their normals.

Surface Complementarity
Based on the van der Waals surface, surface comple-
mentarity (Sm) [60] and overlap (Ov) were defined as in
a previous report [26]. Briefly, for a surface point (a)
located on a buried side chain (referred to as a target),
its nearest neighbor (b) was identified from the surface
points of its surrounding residues, within a distance of
3.5 Å. Then the following expression was computed:

S(a, b) = na · nb. exp ( − w.d2
ab)

where na and nb are two unit normal vectors corre-
sponding to dot surface points a and b respectively, with
dab the distance between them and w a scaling factor,
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set to 0.5. Thus for a target, a distribution of S values
was obtained for all its side chain dot surface points.
The surface complementarity (Sm) for a particular target
was defined as the median of this distribution {S(a,b)}.
The entire side chain surface of a target can be parti-
tioned into patches based on the neighboring residues
whose surface point(s) were identified as its nearest
neighbors. For a specific target (A) and neighbor (B) the
overlap (OvA®B) between them was defined as

Ov(A→B) =
NAB

NA

where NAB is the number of points on the target (A)
that have their nearest neighboring points on B and NA

is the total number of surface points for A. The surface
complementarity for this patch involving A, B will hen-
ceforth be referred to as Sm

A®B. Contact between any
two residues (target and neighbor) can now be defined
in terms of surfaces (based on Sm and Ov). Any two
residues (target: A, neighbor: B) are said to ‘interact’
with each other when Sm

A®B, OvA®B are greater than
equal to 0.4 and 0.08 respectively. It will be noted that
the measures of Sm and Ov are non-commutative, that
is Sm

A®B , OvA®B are not necessarily equal to Sm
B®A

and OvB®A. We formally define inter-residue surface
‘contact’ when their ‘interactions’ are mutually recipro-
cal, that is both Sm

A®B, Sm
B®A and OvA®B, OvB®A

simultaneously satisfy the interaction criteria. For any
contact, Sm and Ov were taken to be the mean of
(Sm

A®B , Sm
B®A) and (OvA®B, OvB®A) respectively.

Similar to point atom contact networks a node in this
case is also representative of the residue side chain (sur-
face). Two nodes are connected by an edge when their
corresponding residue surfaces are in ‘contact’. Weight

of such an edge was defined as
√

S2
m + Ov2 , analogous to

calculating the magnitude of two mutually orthogonal
vector components. Based on the definitions given
above such networks, henceforth referred to as ‘surface
contact networks’, will also be undirected.
Thus, two distinct types of networks have been

defined and used in this study (1) All Residue Surface
Contact Network (ASCN) and (2) All Residue Point
Atom Contact Network (APCN). All contact networks
were represented computationally in terms of one-zero
adjacency matrices, (N×N, for a network of N nodes)
where the matrix element aij = 1 denotes node i to be
connected to node j and 0 otherwise. Since both types
of networks were undirected, these adjacency matrices
were essentially symmetric. Based on the adjacency
matrices the following network parameters were
estimated:
Degree: defined as the number of edges emanating

from a node.

Strength of a node: defined as the sum of the weights
of all edges of a node, i given by:

Si =
N∑
j=1

aij.wij

where wij is the weight of the edge linking the ith and
the jth node and the summation is over all nodes (N) of
the network [40].
Unweighted and weighted clustering coefficients
Expressions for these coefficients are defined as follows:
Unweighted

C(i) =
|{ejh}|
kiC2

where ki is the degree of the ith node and |{ejh}| is the
total number of actually existing connections among the
set of nodes (taken pairwise, {j,h}) from the direct neigh-
borhood of node i and kiC2 is the number of maximum
possible connections within the same set [39].
Weighted

Cw(i) =
1

Si (ki − 1)

∑
j,h

(wij + wih)

2
aij ajh aih

where the symbols have the same significance as given
above and under identical conditions [40].
Cliquishness
Clique is an induced subgraph where every node is con-
nected to every other node. In case of an undirected
graph containing a clique of n nodes, the embedded cli-
que should contain nC2 edges. On the other hand, a
complete graph will have any two nodes connected to
each other. In this analysis the term ‘isolated clique’
refers to such complete graphs. Order (or size i.e., the
number of constituent nodes, nc) of the maximal clique
was searched progressively in all networks starting from
triplets. Initially, a systematic search for all possible
combinations of 3 nodes (from a network) was per-
formed to identify the closed triplet cliques and on
occurrence, nc was set to 3. Then from the immediate
neighborhood of a 3-clique, each node was sampled to
test for adjacencies with all three nodes of the clique. A
new node, on satisfaction of this criterion, was added to
the previous clique and nc was increased by one. The
search was continued till convergence.

Deviation from random topology
To estimate deviation from a random topology,
unweighted and weighted clustering coefficients were
individually averaged over all nodes in a network and
were compared with the same measure obtained for ran-
dom graphs of identical size. Following standard meth-
ods, first, the link density (Ld) of a graph was estimated,

Basu et al. BMC Bioinformatics 2011, 12:195
http://www.biomedcentral.com/1471-2105/12/195

Page 20 of 25



defined as the ratio of the total number of actually exist-
ing edges in the graph and the number of maximum
possible edges if it were a complete graph. Random
graphs of identical size were generated by systematically
calling each pair of nodes along with a random number
seed and the pair was assigned a weighted connection if
the random number was found to be lesser than the
corresponding Ld value obtained from the original
graph. Weight of an edge was also assigned randomly,
scaled appropriately to the values obtained from the
observed contact networks.

Geometry of three-node packing motifs
The methodology of Singh and Thornton [45] was
adopted to identify preferred modes of packing in terms
of the specific geometry of interacting amino acid side
chains. An internal right handed frame of reference was
defined for all the hydrophobic residues based on their
side chain atoms. Conventionally, the Z axis was taken
to be normal to the principal plane defined by either the
ring atoms (phenyl for Phe, Tyr and indole for Trp) for
aromatic residues or a defined set of three side chain
atoms (forming the fork) for branched chain amino
acids (Val, Leu, Ile) (Figure 10).
To characterize the geometry of graphs or subgraphs

consisting of three nodes, a plane, Ptriangle was defined
passing through the origins of the three internal frames
of reference (Figure 11). The resulting triangle defined
by connecting the three origins was characterized by
three internal angles Ω1, Ω2 and Ω3 and the lengths of
the three sides of the triangle r12, r13, and r23. A pre-
ferred right handed frame was placed at the centroid of
this triangle such that the X axis (Xtr) points towards
the origin of a preferred residue chosen according to the
composition of the triplet, (see Results, section: Triplet
Clique), the Z axis (Ztr) taken normal to Ptriangle and Ytr

= Ztr × Xtr . Three inter-planar tilt angles namely θ1t,
θ2t and θ3t were then defined as angles subtended
between Ztr and the Z axes of the three residue-internal
frames. Three additional swivel angles �1s, �2s, �3s
were further defined as those subtended by Zp (the
component of Ztr, projected on residue XY planes) and
the X axes of the three residue-internal frames. The dis-
tributions of these angles in appropriate bins were ana-
lyzed for their deviation from a random distribution by
means of c2. The distribution in the angle subtended by
two randomly oriented vectors has probability density
given by sin θ’ dθ’/2, where θ’ is the angle between the
vectors [45] whereas for two coplanar random vectors
each bin should be equally populated. Thus, for a ran-
dom distribution, the probability of θ1t, θ2t, θ3t falls as a
function of sin θ’ dθ’/2 (three-bin models for Phe and
Tyr and six-bin models for Val, Leu, Ile, Trp: 30° bins)
and each bin should be equally populated for �1s, �2s

and �3s (six-bin models for Phe, Tyr, Trp, Val, Leu, Ile:
60° bins).

Packing density
Packing density is conventionally defined as the ratio of
the volume enclosed by the van der Waals (VDW) envel-
ope for an atom, atomic group or molecule to that of the
actual volume occupied by it in space, conventionally
taken to be its Voronoi volume [2,61] (which is the
volume of a polyhedron, systematically extended around
the atomic group until it comes into contact with similar
polyhedra in its neighborhood). The program Voronoia.
exe [62,63] was used to compute local packing densities
around residues within a polypeptide chain. In this soft-
ware, instead of voronoi volume, solvent excluded (SE)
volume [64] of the atomic group (defined as the space
which is not accessible to any center of solvent spheres,
calculated by rolling a solvent sphere of 1.4 Å probe
radius over the protein surface) is calculated. Then pack-
ing density is given by the following ratio:

packing density =
volume (VDW)

volume (VDW) + volume (SE)

The method is considered an improvement over pre-
vious algorithms due to the fact that cavities are critically
distinguished and eliminated from the actual spaces
between two molecular entities and also the neighboring
surfaces are cut about non planar boundaries.
Propensity
Propensity (P(f/C)) for a family of motifs (f) to belong to
a particular class (C) was calculated by the equation:

P(f /C) =

(
NfC

/
Nf

)
(
NC

/
N

)

where NfC is the number of motifs ‘f’ found in chains
belonging to class C, Nf is the number of motifs ‘f’
found in all classes, NC is the number of chains belong-
ing to class C in the database and N is the total number
of chains in the database. C stands for one of the classes
(all a, all b, a|b, a+b).
Similarly, propensity (P(S/C)) for a network of a given

size (S) to belong to a particular class (C) was calculated
by the equation:

P(S/C) =

(
NSC

/
NS

)
(
NC

/
N

)

where NSC is the number of networks of size S found
in chains belonging to class C, NS is the number of net-
works of size S found in all classes and NC, N, C have
same significance as above.
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Decoy sets and threading
To study the application of surface contact networks in
fold recognition, cyclophilin-like fold (pdb code: 2HAQ)
was selected as the test case and two decoy sets were
assembled, of 250 sequences each. The first set con-
sisted of random sequences of the same length (166
residues) as 2HAQ and the second was composed of
naturally occurring 166 residue stretches truncated from
the N terminal end, from other folds. In general, the
sequence identity of these decoys w.r.t. 2HAQ was less
than 10% and no two sequences in each decoy set had
identities greater than 15% between them. To determine
whether the fold recognition method could identify
sequences compatible with the same fold (cyclophilin-
like) even though exhibiting low sequence identity (less
than 20%) with 2HAQ, the method was tested on the
sequence extracted from 3KOP_F (11%). In addition,
another chain, 3BO7_B (37%) was also included. To
simplify matters, 3KOP_F and 3BO7_B were purposely
chosen as their native chain lengths were identical to
that of 2HAQ.
To start with, the actual three dimensional coordinates

of all the residue conformers as listed in Dunbrack’s
rotamer library [65] were generated. The main chain
coordinates were extracted from 2HAQ and was consid-
ered to be representative of the cyclophilin-like fold. For
threading any sequence onto this template, the main
chain N, CA, C coordinates of the appropriate residue
(to be threaded) were selected from the library and
superposed onto the corresponding native coordinates.
For every threaded residue, the rotamer was selected
randomly from the possibilities present in the library.
Since CA is a tetrahedral center, this procedure automa-
tically superposes the CB atom as well. The root mean
square deviations of N, CA, C, CB atoms of the
threaded structures (w.r.t. 2HAQ native coordinates)
were found to be less than 0.1 Å which vouched for the
correctness of the method. For each residue position,
the superposed side chain coordinates of the rotamer
were then appended to the original main chain coordi-
nates of the template. Subsequent to threading, each
structure was energy-minimized by 500 steps of Steepest
Descents (SD) followed by 20000 steps of Adopted Basis
Newton-Raphson (ABNR) method with a gradient toler-
ance (tolgrd) of 0.001 and a distance dependent dielec-
tric multiplied by 4.0 using the CHARMM-22 force-field
[66,67]. The constant harmonic force parameter was set
to 250.0 for N, CA, C and O atoms and 10.0 for CB to
conserve the main chain three dimensional representa-
tion of the fold. Every structure was checked to have
reasonably acceptable geometry using PROCHECK [68].
For 3KOP_F, 3BO7_B and the native sequence 2HAQ,
the threading procedure was performed 250 times, each
time with a different set of randomized rotamer

combination. For each threaded structure, surface con-
tact networks were generated as described previously
(see Methods, section: Surface complementarity).

Topological fold detection measures
17 additional structures belonging to the cyclophilin-like
fold were chosen from the protein data bank [54] which
had greater than 40% sequence identity upon structural
alignment with 2HAQ (PDB ID_Chain (rmsd (Å),
sequence identity (%)): 1XO7_A (0.5, 74), 3ICH_A (0.8,
65), 2PLU_A (1.3, 63), 2X25_B (1.2, 61), 2CFE_A (1.2,
60), 1QOI_A (0.8, 57), 1A58_A (1.2, 57), 1IHG_A (1.2,
57), 2R99_A (1.3, 57), 1DYW_A (1.4, 57), 2HQJ_A (1.4,
57), 2CMT_A (1.2, 56), 3K2C_B (1.4, 54), 2GW2_A (0.8,
53), 2HE9_A (0.8, 53), 2FU0_A (1.3, 47), 1ZKC_A (1.2,
42)). Surface contact networks (at Sm > = 0.4, Ov > =
0.08) were generated for all the 17 native structures
along with 2HAQ. Unlike networks defined while
describing packing motifs, these networks could contain
unconnected components and even isolated binary links.
Here the primary emphasis was to represent a fold as a
unique subset of relevant links, highly conserved
amongst members of that fold. Pairwise structural align-
ment (using Dali Server [69]) with 2HAQ (considered to
be the template) provided the mapping between the
nodes of 2HAQ and each of the 17 homologous pro-
teins. In case of insertions-deletions or non-alignment,
the node was considered to be absent in the related pro-
tein. Every link in the contact network of 2HAQ was
searched systematically in the 17 homologues and
counted for the number of times the corresponding
(mapped) nodes were found to be present and con-
nected. Only those links from 2HAQ were retained
which were present in at least 80% of the other (17)
homologues. This subset of links was considered to be
representative of the cyclophilin-like fold and designated
as {Lcyp}.
To test for fold compatibility of any sequence

threaded onto 2HAQ, two complementary topological
measures (snet, dnet) were defined based on {Lcyp} and
the corresponding subgraph in the threaded structure. It
should be noted that for the threaded structure, the spe-
cification of a node was identical to that of 2HAQ
depending on its residue number.
Similarity
The fraction of links in {Lcyp} that are conserved in the
threaded structure.

snet =
Nt

Ns

where Nt is the number of equivalent links from
{Lcyp} found in the threaded structure and Ns is the
total number of links in {Lcyp}.
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Distance
The subgraph {Lcyp} can be represented as an adjacency
matrix, A which is considered to be an element in a vec-
tor space. The rows and columns of the matrix are the
sequentially ordered array of residues which appear as
nodes in {Lcyp}. For every threaded structure, an adja-
cency matrix, A’, similar to the one defined on {Lcyp}
can be characterized with the same order of the residue
positions (along the polypeptide chain of 2HAQ) main-
tained in the rows and columns. Thus, A(i,j) and A’(i,j)
represents the adjacency between the same ith and jth

node in graphs A and A’ since their residue positions
are identical in both. Distance between two such (undir-
ected) graphs of identical size could be determined by
counting the number of links that are present in one
and absent in the other and then normalizing by the
number of links present in either of the two graphs.

dnet(A, A‘) =

N∑
i=1

N∑
j = i+1

|A(i, j) − A‘(i, j)|

nL

where A(i,j) and A’(i,j) are the matrix elements of adja-
cency matrices A and A’ based on 2HAQ and the
threaded structure respectively and nL is the number of
elements in the set E ∪ E’ where E and E’ are the sets of
links corresponding to graphs A and A’. It can be shown
that dnet (A, A’) is formally a metric in a vector space
(proof not given).

Languages/Softwares used
Codes for network generation and calculation of net-
work parameters were developed in PERL (v.5.8). Sur-
face generation and surface complementarity/overlap
calculations were performed on a DEC-Alpha server
with programs written in Fortran 90. Matlab (v.7.5) was
used to analyze geometry. Networks were visually ana-
lyzed using Cytoscape [43] (v.2.6.2) and related crystal
structures were surveyed in RasMol [55] (v.2.4.7.2) and
PyMol [44] (v.1.3). The threading program was written
in Fortran 90 and energy-minimization was carried out
using CHARMM [66]. Structural alignments were per-
formed using DALI server [69].

Additional material

Additional file 1: Figure S1. Distribution of point atom contact
networks according to size. Frequency distribution of networks of
different sizes (n) for APCN follows a power law decay (Corresponding
histogram is displayed in the inset, the X axis being truncated to n = 50).

Additional file 2: Table S1. List of proteins with very large networks.
Accession number (PDB ID), protein-class, polypeptide chain length,
network size, fold, overall description of the protein and the source
organism have been tabulated for each protein.

Additional file 3: Table S2. Distribution of networks by size
amongst protein classes. The top row contains the fraction of the

polypeptide chains in each class (bold in parenthesis). Along with
frequency, the propensity (see Methods, section: propensity) of the
network of a given size to be found in a particular class (enclosed in
parenthesis) is also given.

Additional file 4: Table S3. Correlation between number of (unique)
motifs: observed in the database versus simulated from random
graphs. For a given network size (n), the number of unique motifs
observed in the database is tabulated along with the corresponding
number generated from simulated random graphs without and with
cutoffs on the highest attainable degree of a node.

Additional file 5: Figure S2. Motifs belonging to families f3a and
f3b. Network diagrams of motifs up to size 7 (nodes) belonging to
family f3a (left panel) and f3b (right). Motif identifier for each motif is
displayed below the motif with the number of members for ASCN and
APCN respectively in parentheses separated by a front slash.

Additional file 6: Figure S3. Motifs belonging to families f4a, f4b
and f4c. Network diagrams of motifs up to size 7 (nodes) belonging to
family f4a (left panel), f4b (middle) and f4c (right). Motif identifier for
each motif is displayed below the motif with the number of members
for ASCN and APCN respectively in parentheses separated by a front
slash.

Additional file 7: Figure S4. Motifs belonging to family f5. Network
diagrams of motifs up to size 7 (nodes) belonging to family f5. Motif
identifier for each motif is displayed below the motif with the number of
members for ASCN and APCN respectively in parentheses separated by a
front slash.

Additional file 8: Figure S5. Motifs belonging to families f6a, f6b
and f7. Network diagrams of motifs up to size 7 (nodes) belonging to
family f6a (left panel), f6b (middle) and f7 (right). Motif identifier for each
motif is displayed below the motif with the number of members for
ASCN and APCN respectively in parentheses separated by a front slash.

Additional file 9: Figure S6. Motifs belonging to families f8a, f8b
and f8c. Network diagrams of motifs up to size 7 (nodes) belonging to
family f8a (left panel), f8b (middle) and f8c (right). Motif identifier for
each motif is displayed below the motif with the number of members
for ASCN and APCN respectively in parentheses separated by a front
slash.

Additional file 10: Table S4. Distribution of motifs and families in
each protein-class. Motifs (obtained from ASCN, Sm > = 0.4, Ov > =
0.08) are sorted according to size (up to 7 nodes) and grouped under
their respective families. The frequency of their occurrence is given along
with the propensity (see Methods, section: propensity) of a given class
to contain a family of motifs. Other than f1 and f2, rest of the families do
not have sufficient members for robust statistics.

Additional file 11: Table S5. Distribution of motifs and families
obtained at different contact cutoffs. Motifs are sorted according to
size (up to 7 nodes) and grouped under their respective families. Cutoffs
on Sm and Ov are mentioned in parenthesis. Results for the chosen set
of cutoff values, used in the analysis (0.4, 0.08) are highlighted in bold.

Additional file 12: Dataset S1. Surface contact networks constituted
of 15 nodes resolved into optimal set of motifs. Network diagrams of
38 contact networks of size 15 (ASCN) resolved into optimum sets of
motifs (or variants) which are either components (separated by boxes) or
induced subgraphs (highlighted with different colors). Families of these
motifs are also mentioned. Source PDB IDs are displayed at the (right)
bottom of each graph.

Additional file 13: Table S6. Triplet cliques constituted of
hydrophobic residues exhibit preferences in their amino acid
composition. Frequency distributions of triplet clique compositions in
categories (a) C1 (all three residues different), (b) C2 (two residues
identical) and (c) C3 (all three identical) are tabulated respectively.

Additional file 14: Figure S7. Optimally superposed triangles.
Triangles (formed by joining the origins of the internal frames based on
the three residues in a triplet clique) sampled from compositions
belonging to categories C1 (all three residues different: top left), C2 (two
residues identical: bottom left) and C3 (all three residues identical: right)
superposed onto each other.
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Additional file 15: Table S7: Links constituting the subset {Lcyp}:
{Lcyp} represents the subset of links in the surface contact network of
2HAQ which is highly conserved among its close homologues defining
the (cyclophilin-like) fold specific subgraph. Sec str represents the
location of these links with respect to secondary structural elements and
lp stands for the fraction of times the link was found in the
corresponding subgraph of the 17 other homologues, used to define
{Lcyp}. Two nodes in the same row are connected by a link whose
surface complementarity (Sm) and overlap (Ov) are tabulated. In column
2 and 5, Sx, Hy, Lxy and Txy represents Strand x, Helix y, Loop and Turn
connecting secondary structural element x and y respectively.

Additional file 16: Table S8. Specific geometry more clearly
manifested by surfaces than point atoms. c2 of tilt angles (θ1t, θ2t,
θ3t) and swivel angles (�1s, �2s, �3s) for triplet compositions for (a)
ASCN (b) APCN. 1, 2, 3 corresponds to the same sequence of residues
given in the table e.g., ILE ® 1, LEU ® 2, VAL ® 3 for the first entry of
(a). c20.05 for three-bin and six-bin models are 5.991 and 11.071,
respectively. Compositions which have a predicted frequency of less than
5 for any particular angular bin assuming a random distribution are
marked with an asterisk (*). This minimal number (of data points) is 37
for a three-bin and 74 for a six-bin model for tilt (θt) angles and 30 for a
six-bin model for swivel (�s) angles. Only those compositions have been
given whose frequencies are greater than equal to 25.

Additional file 17: Table S9. The Database. Polypeptide chains used in
the analysis sorted according to class. The accession numbers (PDB ID),
chain identifiers along with resolution in Angstroms and the first and last
residue numbers (in case of multidomain proteins) are given in
parenthesis.

List of Abbreviations used
ASCN: All Residue Surface Contact Network; APCN: All Residue Point Atom
Contact Network.
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